Rev. 0



## Ready-to-use 3D Human Ovarian Fibroblast Spheroids (SP3D-HOFS) Catalog #SP3D-7330

### **Product Description**

The ovary is one of the most important female reproductive organs in mammalian species. Stromal cells make up 80% of the total cell population in the ovary, with one of the major stromal cells being ovarian fibroblasts [1]. Hormone signaling from neighboring cancer cells can induce activation of normal fibroblasts, transitioning them into cancer-associated fibroblasts (CAF). Increasing evidence is showing the significance of CAF in the tumor microenvironment and the progression of cancer [2]. Aberrant proliferation of ovarian fibroblasts and the accumulation of extracellular matrix can also cause ovarian fibroblasts (HOF) in these pathophysiological conditions, *in vitro* models to study HOF is necessary. The conventional method of studying fibroblasts in 2D culture is limited in the ability to mimic their native *in-vivo* state due to the lack of extracellular matrix.

To provide an *in vitro* model that better reflects HOF function physiologically, ScienCell has developed ready-to-use human ovarian fibroblast spheroids (SP-HOFS) comprised of primary HOF. These cells are cultured in three-dimensional (3D) architecture and are embedded in their own ECM, which better reflects the native ovarian tissue architecture. These spheroids are ready for experiments within 24-48 hours of thawing, and are an excellent *in vitro* model for studying HOF function and its contribution to diseases such as ovarian cancer and ovarian fibrosis.

| 3D Cell Culture Components  |            |                                                                   |                           |                    |
|-----------------------------|------------|-------------------------------------------------------------------|---------------------------|--------------------|
| Cat #                       | # of vials | Product Name                                                      | Quantity                  | Storage            |
| SP-7330                     | 1          | Human Ovarian Fibroblast Spheroids<br>(SP-HOFS)                   | $1 \times 10^4$ spheroids | Liquid<br>nitrogen |
| 3D-7301                     | 1          | 3D-Ovarian Fibroblast Spheroid Medium<br>(3D-OFSpM)               | 200 mL                    | 2-8 °C             |
| 3D-7352                     | 1          | 3D-Ovarian Fibroblast Spheroid<br>Supplement<br>(3D-OFSpS)        | 4 mL                      | -20 °C             |
| 0004                        | 1          | Fetal Bovine Serum (FBS)                                          | 4 mL                      | -20 °C             |
| 0583                        | 1          | Penicillin/Streptomycin Solution (P/S)                            | 2 mL                      | -20 °C             |
| 0343 (or) 0353<br>(or) 0383 | 1          | Ultra-Low Binding Culture Plates<br>(24-, 48-, or 96- well plate) | 1 plate                   | RT                 |

#### Kit Components (Included)

#### **Quality Control**

SP3D-HOFS are tested for the formation of functional and uniform 3D human ovarian fibroblast spheroids according to the included protocol. All components are negative for bacterial and fungal contamination.

#### **Product Use**

SP3D-HOFS are for research use only. It is not approved for human or animal use, or for application in clinical or *in vitro* diagnostic procedures.

#### Shipping

SP-7330, 3D-7352, 0004, and 0583 are shipped on dry ice. 3D-7301 and (0343 or 0353 or 0383) are shipped at room temperature.

#### References

[1] Shahri PAK, Chiti MC and Amorim C. (2019) "Isolation and characterization of the human ovarian cell population for transplantation into an artificial ovary." *Anim Reprod.* 16 (1): 39-44.

[2] Yang D, Liu J, Qian H and Zhuang Q. (2023) "Cancer-associated fibroblasts: from basic science to anticancer therapy." *Exp Mol Med.* 55: 1322-1332.

[3] Gu M, Wang Y and Yu Y. (2024) "Ovarian fibrosis: molecular mechanisms and potential therapeutic targets." *J Ovarian Res.* 17: 139

#### **Procedure:**

#### Step I: Preparing the complete 3D culture medium

- Thaw 3D-ovarian fibroblast spheroid supplement (3D-OFSpS; Cat. #3D-7352), fetal bovine serum (FBS; Cat. #0004) and penicillin/streptomycin solution (P/S solution; Cat. #0583) at 37°C. Mix 3D-OFSpS, FBS and P/S solution into the 3D-ovarian fibroblast spheroid medium (3D-OFSpM; Cat. #3D-7301) by gently swirling the medium bottle around.
  - a. 3D-OFSpM is viscous and optimized for homogenous spheroid formation.
  - b. Warm the complete 3D-OFSpM to room temperature before use.
  - c. When stored in the dark at 4°C, the complete medium is stable for one month.

#### Step II: Thawing and maintaining the ready-to-use 3D spheroids

- 2. Add 12 mL of 3D culture medium into a fresh 50 mL conical tube.
- 3. One frozen vial contains  $\ge 1 \times 10^4$  spheroids, which is sufficient for plating into half of a multi-well plate (e.g. 24-, 48-, and 96-well ultra-low binding culture plate).
- 4. Place the frozen vial in a 37°C water bath. Hold and rotate the vial gently until the contents completely thaw. Promptly remove the vial from the water bath, wipe it down with 70% ethanol, and transfer it to the sterile field.
- 5. Carefully remove the cap without touching the interior threads. Gently pipette the spheroid suspension up and down **two times** to disperse potential spheroid aggregates.
- 6. Gently transfer the spheroid suspension into the 50 mL conical tube from step 2.

7. Resuspend spheroids in 3D culture medium by gently pipetting up and down for ~ 5 times using a serological pipette.

# Note: 3D culture medium has a high viscosity; thus, pipetting slowly is important to avoid bubble formation.

8. Aliquot the suggested volumes (see **Table A**, **column 2**) of spheroid suspension into each well of the ultra-low binding plate (24-, 48- or 96-well plate).

| 1             | 2               |  |
|---------------|-----------------|--|
| Plate formats | Volume per well |  |
| 24-well       | ~ 1000 µL       |  |
| 48-well       | ~ 500 µL        |  |
| 96-well       | ~ 250 µL        |  |

#### Table A: An Example of Suggested Medium Volumes

- 9. Incubate spheroids at  $37^{\circ}$ C in a 5 % CO<sub>2</sub> incubator.
- 10. Monitor the health of spheroids every day under the microscope. Human mini liver spheroids are recovered and ready for experiments after 24-48 hours post thawing (see Figure 1).
- 11. Next day, change 60-70 % of the top layer of the medium using a pipette by hand to remove the residual DMSO (Do not use a vacuum aspirator). After 1<sup>st</sup> medium change, no additional medium changes are necessary.

Note: Spheroids are situated at the bottom of the well <u>due to the viscosity of the 3D culture</u> <u>medium</u>. Thus, centrifugation of the plates is not necessary, and spheroid loss will not occur by changing 60-70 % of the top layer of the medium by pipetting.

#### 

Fig. 1 –Brightfield images of the ready-to-use human ovarian fibroblast spheroids after thawing (taken at 100X magnification).

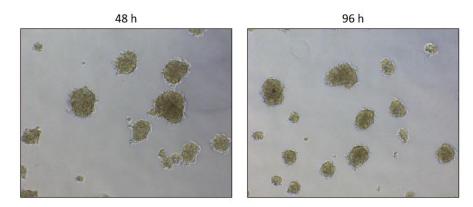
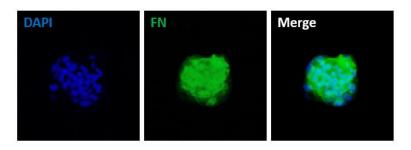




Fig. 2 – Human ovarian fibroblast spheroids express the fibroblast marker fibronectin (FN) (at 200x magnification).

