

# GeneQuery<sup>TM</sup> Mouse cDNA Evaluation Kit, Deluxe (GQM-CED) Catalog #GK991M 100 reactions

# **Product Description**

ScienCell's GeneQuery<sup>TM</sup> Mouse cDNA Evaluation Kit, Deluxe (GQM-CED) assesses mouse cDNA quality. The kit verifies successful reverse transcription of messenger RNA (mRNA) to complementary DNA (cDNA), reveals the presence of genomic DNA (gDNA) contamination in cDNA samples, and detects qPCR inhibitor contamination. Good quality cDNA is a critical component for successful gene expression profiling. The GQM-CED kit is highly recommended for cDNA applications such as GeneQuery<sup>TM</sup> qPCR arrays.

Each primer set included in GQM-CED qPCR kit arrives lyophilized in a 2 mL vial. All primers are designed and tested under the same parameters: (i) an optimal annealing temperature of  $65^{\circ}$ C (with 2 mM Mg<sup>2+</sup>, and no DMSO); (ii) recognition of all known target gene transcript variants; and (iii) specific amplification of only one amplicon. Each primer set has been validated by qPCR by melt curve analysis and gel electrophoresis.

| Cat. No. | Quantity | Component                                                                   | Amplicon size |
|----------|----------|-----------------------------------------------------------------------------|---------------|
| GK991Ma  | 1 vial   | Mouse B2m cDNA primer set<br>(lyophilized, 100 reactions)                   | 86 bp         |
| GK991Mb  | 1 vial   | Mouse Gapdh cDNA primer set<br>(lyophilized, 100 reactions)                 | 135 bp        |
| GK991Mc  | 1 vial   | Mouse genomic DNA control (MGDC) primer set<br>(lyophilized, 100 reactions) | 93 bp         |
| GK991d   | 1 vial   | Positive PCR control (PPC) primer set<br>(lyophilized, 100 reactions)       | 147 bp        |
| GK991e   | 8 mL     | Nuclease-free H <sub>2</sub> O                                              | N/A           |

## GeneQuery<sup>TM</sup> Mouse cDNA Evaluation Kit, Deluxe Components

- Mouse B2m cDNA primer set targets mouse housekeeping gene B2m. The forward and reverse primers are located on different exons, giving variant amplicon sizes for cDNA and gDNA. For mouse cDNA samples, B2m primer set gives an 86 base pair (bp) PCR product.
- Mouse Gapdh cDNA primer set targets mouse housekeeping gene Gapdh. The forward primer is located on an exon-exon junction, therefore mouse gDNA won't get amplified under suggested qPCR conditions listed in table 2. For mouse cDNA samples, Gapdh primer set gives a 135 bp PCR product.

- Mouse Genomic DNA Control (MGDC) detects possible gDNA contamination in the cDNA samples. It contains a primer set targeting a 93 bp non-transcribed region of the genome on mouse chromosome 5.
- Positive PCR Control (PPC) tests whether samples contain inhibitors or other factors that may negatively affect gene expression results. The PPC consists of a predispensed synthetic DNA template and a primer set that can amplify it. The sequence of the DNA template is not present in the mouse genome, and thus tests the efficiency of the polymerase chain reaction itself.

| Component             | Recommended                                                     |  |
|-----------------------|-----------------------------------------------------------------|--|
| Reverse transcriptase | MultiScribe Reverse Transcriptase (Life Tech, Cat. #4311235)    |  |
| cDNA template         | Customers' samples                                              |  |
| qPCR master mix       | FastStart Essential DNA Green Master (Roche, Cat. #06402712001) |  |

#### Additional Materials Required (Materials Not Included in Kit)

# **Quality Control**

Each primer set is validated by qPCR melt curve and amplification curve analyses. The PCR products are analyzed by gel electrophoresis to confirm single band amplification.

# **Product Use**

GQM-CED is for research use only. It is not approved for human or animal use or for application in clinical or *in vitro* diagnostic procedures.

## **Shipping and Storage**

**T** 1 1 1

This product is shipped at ambient temperature. Upon receipt, the vials should be stored at  $4^{\circ}$ C and are good for up to 12 months. For long-term storage (>1 year), store the vials at -20°C in a manual defrost freezer.

## Procedures

*Note*: The primers in each vial are lyophilized.

- 1. Prior to first use, allow vials to warm to room temperature.
- 2. Briefly centrifuge at 1,500x g for 1 minute.
- 3. Add 200  $\mu$ l of nuclease-free H<sub>2</sub>O to each vial to make 2  $\mu$ M primer stock solutions. Aliquot as needed. Store at -20°C in a manual defrost freezer. Avoid repeated freeze-and-thaw cycles.
- 4. Prepare 20 µl PCR reactions for one well as shown in Table 1.

| Table 1                        |              |
|--------------------------------|--------------|
| 2 µM primer stock              | 2 µl         |
| cDNA template                  | 0.2 – 250 ng |
| 2x qPCR master mix             | 10 µ1        |
| Nuclease-free H <sub>2</sub> O | variable     |
| Total volum                    | ne 20 µl     |

*Important: Only* use polymerases with hot-start capability to prevent possible primerdimer formation. *Only* use nuclease-free reagents in PCR amplification.

- 5. Add the mixture of 2  $\mu$ M primer stock, cDNA template, 2x qPCR master mix, and nuclease-free H<sub>2</sub>O to each well. Cap or seal the wells.
- 6. Briefly centrifuge the samples at 1,500x g for 1 minute at room temperature. For maximum reliability, replicates are recommended (minimum of 3).
- 7. For PCR program setup, please refer to the instructions of the master mix of the user's choice. We recommend a typical 3-step qPCR protocol for a 200nt amplicon:

| Step                 | Temperature            | Time       | Number of cycles |
|----------------------|------------------------|------------|------------------|
| Initial denaturation | 95°C                   | 10 min     | 1                |
| Denaturation         | 95°C                   | 20 sec     |                  |
| Annealing            | 65°C                   | 20 sec     | 40               |
| Extension            | 72°C                   | 20 sec     | 40               |
| Data acquisition     | Plate read             |            |                  |
| Recommended          | Melting curve analysis |            | 1                |
| Hold                 | 4°C                    | Indefinite | 1                |

Table 2. Three-step cycling protocol

8. (Optional) Load the PCR products on 1.5% agarose gel and perform electrophoresis to confirm the single band amplification in each well.

#### Appendix

Table 3. Interpretation of results:

| Primers                       | Results          | Interpretation                                                                                | Suggestions                                                                                                                                           |
|-------------------------------|------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| B2m and Gapdh                 | Both $Cq \ge 35$ | There is no or very low<br>cDNA content in the<br>sample.                                     | Optimize RNA extraction /reverse<br>transcription procedure;<br>make sure there is no nuclease<br>presence in the system                              |
| gDNA Control<br>(MGDC)        | Cq < 35          | The sample is contaminated with gDNA                                                          | Optimize RNA extraction<br>procedure                                                                                                                  |
| Positive PCR<br>Control (PPC) | Cq > 30          | Poor PCR performance;<br>possible PCR inhibitor in<br>reactions;<br>cycling program incorrect | Eliminate inhibitor by purifying<br>samples;<br>use correct cycling program and<br>make sure that all cycle parameters<br>have been correctly entered |



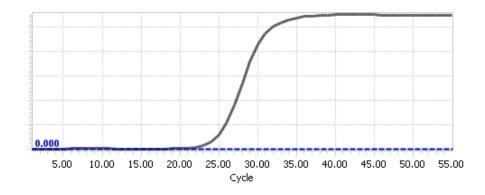
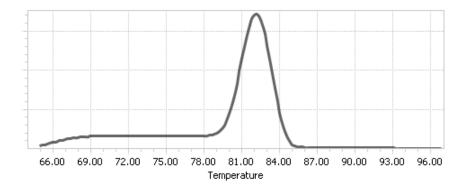




Figure 2. A typical melting peak of a qPCR product.

