

Pro Ligation-Free Cloning MasterMix

Cat. No. G4004

Store all components at -20°C.

Product Description

abm's Pro Ligation-Free Cloning MasterMix is a ready-to-use solution designed for rapid, efficient and seamless DNA assembly regardless of fragment length or end compatibility. It enables one-step assembly of multiple DNA fragments with overlapping ends in a single isothermal reaction making it ideal for synthetic biology and molecular biology applications. To support accurate fragment amplification prior to assembly, the kit includes MegaFi[™] Pro Fidelity 2X PCR MasterMix to enable robust, high-fidelity PCR.

Product Component	Quantity	Part. No.
Pro Ligation-Free Cloning 2X MasterMix	50 rxn (500 μl)	P4004-1
Positive Control Insert	5 μΙ	P4004-2
Positive Control Vector	5 μΙ	P4004-3
MegaFi™ Pro Fidelity 2X PCR MasterMix	1.25 ml	P887-1

Additional Materials Required (not supplied)

Material	Recommended Product	Cat. No.	Required For
PCR Purification Kit	Column-Pure Gel and PCR Clean-Up Kit	D516	Part B
Competent E. coli cells	ProClone™ Competent Cells	E003	Part D

Protocol

Part A – Design Primers and Prepare Overlapping Fragments

- 1. Linearize vector backbone by restriction digestion or inverse PCR. Load 2-5 µl of vector product on an agarose gel to confirm correct linearization.
- Design PCR primers to amplify insert fragments with 15-25 bp of overlapping homology to each adjacent component (see Appendix for details).
- Using the primers from Step 2, amplify each fragment using MegaFi[™] Pro Fidelity 2X PCR MasterMix according to the table below.

MegaFi[™] Pro Fidelity 2X PCR MasterMix reaction set up:

Component	Volume
MegaFi™ Pro Fidelity 2X PCR MasterMix	12.5 µl
Forward Primer (10 µM)	1 μΙ
Reverse Primer (10 µM)	1 μΙ
Template DNA	Variable (1-10 ng Plasmid DNA)
Nuclease-free H ₂ O	Up to 25 µl

Gently mix the reaction components and briefly centrifuge, then transfer tube to a thermal cycler using the following conditions:

Step	Temperature	Time
Initiation Denaturation	95°C	5 min
Annealing/Extension (25-35 Cycles)	95°C 50-70°C 72°C	15 sec 15 sec 20-30 sec/kb
Final Extension	72°C	5 min

4. Load 2-5 µl of product on an agarose gel to confirm correct amplification.

Part B – Purify Overlapping Fragments

- Purify each fragment and vector using a standard spin column PCR Purification Kit.
 If non-specific or undigested products were observed in Part A, use gel extraction to excise and purify the desired fragment(s).
- 2. Quantify concentration and purity of each fragment using a Nano Spectrophotometer.

Part C – DNA Assembly of Overlapping Fragments

1. Set up the below reactions on ice.

Component	Volume	Positive Control
Pro Ligation-Free Cloning 2X MasterMix	10 μΙ	10 μΙ
Linearized Vector or Positive Control Vector	50-100 ng	1 μΙ
Each Fragment or Positive Control Insert	3:1 insert-vector molar ratio	1 μΙ
Nuclease-free H ₂ O	Up to 20 µl	8 µl

2. Use the formula below to calculate the insert-vector molar ratio.

insert (ng) =
$$3 \times \frac{\text{insert (bp)}}{\text{vector (bp)}} \times \text{vector (ng)}$$

- 3. Mix the reactions by pipette and transfer to a thermal cycler. Incubate at 50°C: 15 min for 1-2 fragments or 60 min for 3+ fragments.
 - •Incubate the Positive Control Reaction for 15 min.
- 4. Store samples on ice or at -20°C until transformation.

Part D – Transformation of Assembly Mixture and Screening

- 1. Transform mixture from Part C into competent *E. coli* cells, plate cells on appropriate antibiotic LB agar and incubate overnight at 37°C.
 - •Plate the Positive Control Reaction on LB agar ampicillin.
- 2. The following day assess transformation plates and screen by colony PCR.
- Confirm correct DNA assembly by plasmid extraction followed by restriction digestion and/or sequencing.
 - Assess the Positive Control Reaction for correct assembly by the appearance of pink-colored colonies following transformation as the insert contains reporter mCherry. Alternatively, restriction digestion of extracted plasmid DNA can be performed with enzymes Hindlll and EcoRI resulting in 2.6 + 0.8 kb fragments.

Troubleshooting

- No colonies following transformation: re-assess primer design, concentration and purity of DNA fragments, insert-vector molar ratio calculation, antibiotic used and transformation efficiency of competent *E. coli* cells.
- Colonies do not pass screening: vector was not completely linearized, presence of non-specific amplicons, antibiotic plates are old or expired.

Appendix

Primer Design for Overlapping Fragments

- 1. Begin by designing the assembled DNA construct using sequence viewer software.
- Identify the junctions between each DNA fragment (e.g., junctions between grey vector and blue fragment) and choose 15-25 bp of overlapping sequence (e.g., indicated purple boxes). It is critical that each overlapping sequence is unique to allow for the correct order of assembly.
- 3. Design the 3' region of each primer to be specific to the insert (e.g. blue arrows), ensuring appropriate melting temperature and minimal secondary structures for optimal PCR amplification.
- 4. Add the 5' overlapping region to each primer (e.g. grey portion of the blue arrows).

