

$Gene Query^{TM} \ Human \ Cell \ Cycle \ qPCR \ Array \ Kit \\ (GQH-CCY)$

Catalog #GK003

Product Description

ScienCell's GeneQueryTM human cell cycle qPCR array kit (GQH-CCY) is designed to facilitate gene expression profiling of key genes involved in human cell cycle progression. 88 genes are selected in this kit based on public database and literature research.

GeneQueryTM qPCR array kits are qPCR ready in a 96-well plate format, with each well containing one primer set that can specifically recognize and efficiently amplify a target gene's cDNA. The carefully designed primers ensure that: (i) the optimal annealing temperature in qPCR analysis is 65°C (with 2 mM Mg²⁺, and no DMSO); (ii) the primer set recognizes all known transcript variants of target gene, unless otherwise indicated; and (iii) only one gene is amplified. Each primer set has been validated by qPCR with melt curve analysis, and gel electrophoresis.

GeneQueryTM qPCR Array Kit Controls

Each GeneQueryTM plate contains eight controls (Figure 1).

- Five target housekeeping genes (β-actin, GAPDH, LDHA, NONO, and PPIH), which enable normalization of data.
- The Genomic DNA (gDNA) Control (GDC) detects possible gDNA contamination in the cDNA samples. It contains a primer set targeting a non-transcribed region of the genome.
- Positive PCR Control (PPC) tests whether samples contain inhibitors or other factors that
 may negatively affect gene expression results. The PPC consists of a predispensed
 synthetic DNA template and a primer set that can amplify it. The sequence of the DNA
 template is not present in the human genome, and thus tests the efficiency of the
 polymerase chain reaction itself.
- The No Template Control (NTC) is strongly recommended, and can be used to monitor the DNA contamination introduced during the workflow such as reagents, tips, and the lab bench.

Kit Components

Component	Quantity	Storage
GeneQuery TM array plate with lyophilized primers	1	4°C or -20°C
Optical PCR plate seal	1	RT
Nuclease-free H ₂ O	2 mL	4°C

Additional Materials Required (Materials Not Included in Kit)

Component	Recommended					
Reverse transcriptase	MultiScribe Reverse Transcriptase (Life Tech, Cat. #4311235)					
cDNA template	Customers' samples					
qPCR master mix	FastStart Essential DNA Green Master (Roche, Cat. # 06402712001)					

Quality Control

All the primer sets are validated by qPCR with melt curve analysis. The PCR products are analyzed by gel electrophoresis. Single band amplification is confirmed for each set of primers.

Product Use

GQH-CCY is for research use only. It is not approved for human or animal use, or for application in clinical or *in vitro* diagnostic procedures.

Shipping and Storage

The product is shipped at ambient temperature. Upon receipt, the plate should be stored at 4°C and is good for up to 12 months. For long-term storage (>1 year), store the plate at -20°C in a manual defrost freezer.

Note: The primers in each well are lyophilized.

- 1. Prior to use, allow plates to warm to room temperature.
- 2. Briefly centrifuge at 1,500x g for 1 minute before slowly peeling off the seal.
- 3. Prepare 20 µl PCR reactions for one well as shown in Table 1.

Table 1

cDNA template	0.2 – 250 ng
2x qPCR master mix	10 μl
Nuclease-free H ₂ O	variable
T	otal volume 20 µl

Important: Only use polymerases with hot-start capability to prevent possible primer-dimer formation. *Only* use nuclease-free reagents in PCR amplification.

4. Add the mixture of 2x qPCR master mix, cDNA template, and nuclease-free H₂O to each well containing the lyophilized primers. Seal the plate with the provided optical PCR plate seal.

Important: In NTC control well, do NOT add cDNA template. Add 2x qPCR master mix and nuclease-free H2O only.

- 5. Briefly centrifuge the plates at 1,500x g for 1 minute at room temperature. For maximum reliability, replicates are strongly recommended (minimum of 3).
- 6. For PCR program setup, please refer to the instructions of the master mix of the user's choice. We recommend a typical 3-step qPCR protocol for a 200nt amplicon:

Three-step cycling protocol

Step	Temperature	Time	Number of cycles			
Initial denaturation	95°C 10 min		1			
Denaturation	95°C	20 sec				
Annealing	65°C	20 sec	40			
Extension	72°C	20 sec	40			
Data acquisition	Plat					
Recommended	Melting cı	1				
Hold	4°C	Indefinite	1			

7. (Optional) Load the PCR products on 1.5% agarose gel and perform electrophoresis to confirm the single band amplification in each well.

Figure 1. Layout of GeneQueryTM qPCR array kit controls.

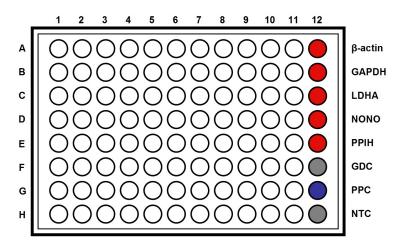


Table 2. Interpretation of control results:

Controls	Results	Interpretation	Suggestions
Housekeeping gene controls	Variability of a housekeeping gene's Cq value	The expression of the housekeeping gene is variable in samples; cycling program is incorrect	Choose a constantly expressed target, or analyze expression levels of multiple housekeeping genes; use correct cycling program and make sure that all cycle parameters have been correctly entered
gDNA Control (GDC)	Cq ≥ 35	No gDNA detected	N/A
	Cq < 35	The sample is contaminated with gDNA	Perform DNase digestion during RNA purification step
Positive PCR Control (PPC)	Cq > 30; or The Cq variations > 2 between qPCR Arrays.	Poor PCR performance; possible PCR inhibitor in reactions; cycling program incorrect	Eliminate inhibitor by purifying samples; use correct cycling program and make sure that all cycle parameters have been correctly entered
No Template Control (NTC)	Positive	DNA contamination in workflow	Eliminate sources of DNA contamination (reagents, plastics, etc.)

Figure 2. A typical amplification curve showing the amplification of a qPCR product.

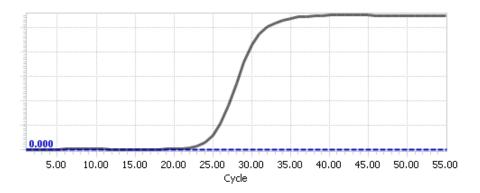
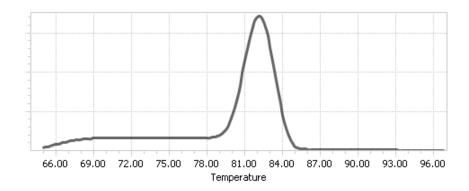



Figure 3. A typical melting peak of a qPCR product.

$\begin{tabular}{ll} Gene Query^{TM} \ Human \ Cell \ Cycle \ qPCR \ Array \ Kit \\ (GQH-CCY) \end{tabular}$

Catalog #GK003

GeneQueryTM Human Cell Cycle qPCR Array Plate Layout* (8 controls in Bold and Italic)

	1	2	3	4	5	6	7	8	9	10	11	12
A	ANAPC2	BUB3	CCND2	CDC20	CDK6	CHEK1	E2F1	HDAC1	MCM3	RAD1	SMAD2	β-actin
B	ATM	CASP3	CCND3	CDC25A	CDK7	CHEK2	E2F2	HDAC2	MCM4	RAD17	SMC3	GAPDH
C	ATR	CCNA1	CCNE2	CDC25C	CDK8	CKS1B	E2F4	HUS1	MCM5	RAD51	STAG1	LDHA
D	AURKB	CCNA2	CCNF	CDC34	CDKN1A	CKS2	E2F5	KNTC1	MDM2	RAD9A	TFDP1	NONO
\mathbf{E}	BCCIP	CCNB1	CCNG1	CDC6	CDKN1B	CUL1	EP300	KPNA2	MYC	RB1	TFDP2	PPIH
\mathbf{F}	BIRC5	CCNB2	CCNH	CDK1	CDKN2A	CUL2	GADD45A	MAD2L1	NBN	RBL1	TGFB1	GDC
G	BRCA1	CCNC	CCNT1	CDK2	CDKN2B	CUL3	GSK3B	MAD2L2	ORC1	RBL2	TP53	PPC
H	BRCA2	CCND1	CDC16	CDK4	CDKN3	DBF4	GTSE1	MCM2	PCNA	SKP2	WEE1	NTC

^{*} gene selection may be updated based on new research and development