

GeneQueryTM Human Apoptosis qPCR Array Kit (GQH-APO)

Catalog #GK001

Product Description

ScienCell's GeneQueryTM human apoptosis qPCR array kit (GQH-APO) is designed to facilitate gene expression profiling of key genes involved in human apoptosis. 88 genes are selected in this kit based on public database and literature research.

GeneQueryTM qPCR array kits are qPCR ready in a 96-well plate format, with each well containing one primer set that can specifically recognize and efficiently amplify a target gene's cDNA. The carefully designed primers ensure that: (i) the optimal annealing temperature in qPCR analysis is 65°C (with 2 mM Mg²⁺, and no DMSO); (ii) the primer set recognizes all known transcript variants of target gene, unless otherwise indicated; and (iii) only one gene is amplified. Each primer set has been validated by qPCR with melt curve analysis, and gel electrophoresis.

GeneQueryTM qPCR Array Kit Controls

Each GeneQueryTM plate contains eight controls (Figure 1).

- Five target housekeeping genes (β-actin, GAPDH, LDHA, NONO, and PPIH), which enable normalization of data.
- The Genomic DNA (gDNA) Control (GDC) detects possible gDNA contamination in the cDNA samples. It contains a primer set targeting a non-transcribed region of the genome.
- Positive PCR Control (PPC) tests whether samples contain inhibitors or other factors that may negatively affect gene expression results. The PPC consists of a predispensed synthetic DNA template and a primer set that can amplify it. The sequence of the DNA template is not present in the human genome, and thus tests the efficiency of the polymerase chain reaction itself.
- The No Template Control (NTC) is strongly recommended, and can be used to monitor the DNA contamination introduced during the workflow such as reagents, tips, and the lab bench.

Kit Components

Component	Quantity	Storage
GeneQuery TM array plate with lyophilized primers	1	4°C or -20°C
Optical PCR plate seal	1	RT
Nuclease-free H ₂ O	2 mL	4°C

Additional Materials Required (Materials Not Included in Kit)

Component	Recommended					
Reverse transcriptase	MultiScribe Reverse Transcriptase (Life Tech, Cat. #4311235)					
cDNA template	Customers' samples					
qPCR master mix	FastStart Essential DNA Green Master (Roche, Cat. # 06402712001)					

Quality Control

All the primer sets are validated by qPCR with melt curve analysis. The PCR products are analyzed by gel electrophoresis. Single band amplification is confirmed for each set of primers.

Product Use

GQH-APO is for research use only. It is not approved for human or animal use, or for application in clinical or *in vitro* diagnostic procedures.

Shipping and Storage

The product is shipped at ambient temperature. Upon receipt, the plate should be stored at 4°C and is good for up to 12 months. For long-term storage (>1 year), store the plate at -20°C in a manual defrost freezer.

Note: The primers in each well are lyophilized.

- 1. Prior to use, allow plates to warm to room temperature.
- 2. Briefly centrifuge at 1,500x g for 1 minute before slowly peeling off the seal.
- 3. Prepare 20 µl PCR reactions for one well as shown in Table 1.

Table 1

cDNA template	0.2 – 250 ng
2x qPCR master mix	10 μl
Nuclease-free H ₂ O	variable
T	otal volume 20 µl

Important: Only use polymerases with hot-start capability to prevent possible primer-dimer formation. *Only* use nuclease-free reagents in PCR amplification.

4. Add the mixture of 2x qPCR master mix, cDNA template, and nuclease-free H₂O to each well containing the lyophilized primers. Seal the plate with the provided optical PCR plate seal.

Important: In NTC control well, do NOT add cDNA template. Add 2x qPCR master mix and nuclease-free H2O only.

- 5. Briefly centrifuge the plates at 1,500x g for 1 minute at room temperature. For maximum reliability, replicates are strongly recommended (minimum of 3).
- 6. For PCR program setup, please refer to the instructions of the master mix of the user's choice. We recommend a typical 3-step qPCR protocol for a 200nt amplicon:

Three-step cycling protocol

Step	Temperature	Time	Number of cycles		
Initial denaturation	95°C	10 min	1		
Denaturation	95°C				
Annealing	65°C	20 sec	40		
Extension	72°C 20 sec		40		
Data acquisition	Plat				
Recommended	Melting cı	1			
Hold	4°C	Indefinite	1		

7. (Optional) Load the PCR products on 1.5% agarose gel and perform electrophoresis to confirm the single band amplification in each well.

Figure 1. Layout of GeneQueryTM qPCR array kit controls.

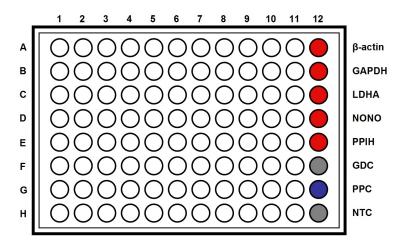


Table 2. Interpretation of control results:

Controls	Results	Interpretation	Suggestions
Housekeeping gene controls	Variability of a housekeeping gene's Cq value	The expression of the housekeeping gene is variable in samples; cycling program is incorrect	Choose a constantly expressed target, or analyze expression levels of multiple housekeeping genes; use correct cycling program and make sure that all cycle parameters have been correctly entered
gDNA Control (GDC)	Cq ≥ 35	No gDNA detected	N/A
	Cq < 35	The sample is contaminated with gDNA	Perform DNase digestion during RNA purification step
Positive PCR Control (PPC)	Cq > 30; or The Cq variations > 2 between qPCR Arrays.	Poor PCR performance; possible PCR inhibitor in reactions; cycling program incorrect	Eliminate inhibitor by purifying samples; use correct cycling program and make sure that all cycle parameters have been correctly entered
No Template Control (NTC)	Positive	DNA contamination in workflow	Eliminate sources of DNA contamination (reagents, plastics, etc.)

Figure 2. A typical amplification curve showing the amplification of a qPCR product.

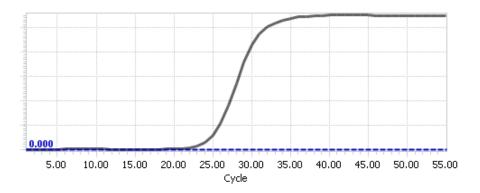
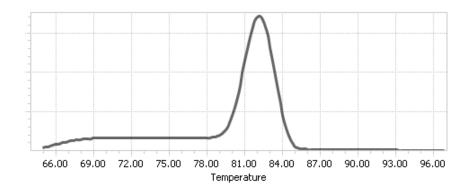



Figure 3. A typical melting peak of a qPCR product.

GeneQueryTM Human Apoptosis qPCR Array Kit (GQH-APO)

Catalog #GK001

GeneQueryTM Human Apoptosis qPCR Array Plate Layout* (8 controls in Bold and Italic)

	1	2	3	4	5	6	7	8	9	10	11	12
A	ABL1	BAG1	BIRC1	BRAF	CASP6	DFFA	IL1RAP	MYD88	PIK3R3	RELA	TNFRSF9	β-actin
B	AIFM1	BAG3	BIRC2	CAPN1	CASP9	DIABLO	IL3	NGF	PPP3CA	RIPK1	TNFSF10	GAPDH
C	AKT1	BCL10	BIRC3	CAPN2	CD40	ENDOG	IRAK2	NOD1	PPP3CB	RIPK2	TP53	LDHA
D	AKT2	BCL2	BIRC5	CASP1	CFLAR	FAS	IRAK3	NOL3	PPP3R1	TNF	TP53BP2	NONO
\mathbf{E}	AKT3	BCL2L1	BIRC6	CASP10	CHUK	HRK	IRAK4	PIK3CB	PRKAR1A	TNFRSF10B	TRADD	PPIH
\mathbf{F}	APAF1	BCL2L10	BNIP2	CASP2	CIDEA	IGF1R	LTBR	PIK3CG	PRKAR2B	TNFRSF10D	TRAF2	GDC
G	ATM	BID	BNIP3	CASP3	CRADD	IL1B	MAP3K14	PIK3R1	PRKX	TNFRSF11B	TRAF3	PPC
\mathbf{H}	BAD	BIK	BNIP3L	CASP4	DAPK1	IL1R1	MCL1	PIK3R2	PYCARD	TNFRSF1B	XIAP	NTC

^{*} gene selection may be updated based on new research and development