

GeneQueryTM Human Astrocyte Cell Biology qPCR Array Kit (GQH-AST) Catalog #GK009

Product Description

ScienCell's GeneQueryTM human astrocyte cell biology qPCR array kit (GQH-AST) is designed to facilitate gene expression profiling of key genes involved in (i) human astrocyte development and maintenance; (ii) genes that are much up-regulated in astrocytes; and (iii) related signaling pathways, such as Notch, TGFB, JAK/STAT, and MAPK pathways. 88 genes are selected in this kit based on public database and literature research.

GeneQueryTM qPCR array kits are qPCR ready in a 96-well plate format, with each well containing one primer set that can specifically recognize and efficiently amplify a target gene's cDNA. The carefully designed primers ensure that: (i) the optimal annealing temperature in qPCR analysis is 65° C (with 2 mM Mg²⁺, and no DMSO); (ii) the primer set recognizes all known transcript variants of target gene, unless otherwise indicated; and (iii) only one gene is amplified. Each primer set has been validated by qPCR with melt curve analysis, and gel electrophoresis.

GeneQueryTM qPCR Array Kit Controls

Each GeneQueryTM plate contains eight controls (Figure 1).

- Five target housekeeping genes (β -actin, GAPDH, LDHA, NONO, and PPIH), which enable normalization of data.
- The Genomic DNA (gDNA) Control (GDC) detects possible gDNA contamination in the cDNA samples. It contains a primer set targeting a non-transcribed region of the genome.
- Positive PCR Control (PPC) tests whether samples contain inhibitors or other factors that may negatively affect gene expression results. The PPC consists of a predispensed synthetic DNA template and a primer set that can amplify it. The sequence of the DNA template is not present in the human genome, and thus tests the efficiency of the polymerase chain reaction itself.
- The No Template Control (NTC) is strongly recommended, and can be used to monitor the DNA contamination introduced during the workflow such as reagents, tips, and the lab bench.

Kit Components

Component	Quantity	Storage
GeneQuery TM array plate with lyophilized primers	1	4° C or -20° C
Optical PCR plate seal	1	RT
Nuclease-free H ₂ O	2 mL	4°C

Additional Materials Required (Materials Not Included in Kit)

Component	Recommended				
Reverse transcriptase	MultiScribe Reverse Transcriptase (Life Tech, Cat. #4311235)				

cDNA template	Customers' samples
qPCR master mix	FastStart Essential DNA Green Master (Roche, Cat. # 06402712001)

Quality Control

All the primer sets are validated by qPCR with melt curve analysis. The PCR products are analyzed by gel electrophoresis. Single band amplification is confirmed for each set of primers.

Product Use

GQH-AST is for research use only. It is not approved for human or animal use, or for application in clinical or *in vitro* diagnostic procedures.

Shipping and Storage

The product is shipped at ambient temperature. Upon receipt, the plate should be stored at $4^{\circ}C$ and is good for up to 12 months. For long-term storage (>1 year), store the plate at -20°C in a manual defrost freezer.

Procedures

Note: The primers in each well are lyophilized.

- 1. Prior to use, allow plates to warm to room temperature.
- 2. Briefly centrifuge at 1,500x g for 1 minute before slowly peeling off the seal.
- 3. Prepare 20 µl PCR reactions for one well as shown in Table 1.

cDNA template		0.2 – 250 ng
2x qPCR master mix		10 µl
Nuclease-free H ₂ O		variable
	Total volume	20 µl

Important: Only use polymerases with hot-start capability to prevent possible primerdimer formation. *Only* use nuclease-free reagents in PCR amplification.

4. Add the mixture of 2x qPCR master mix, cDNA template, and nuclease-free H₂O to each well containing the lyophilized primers. Seal the plate with the provided optical PCR plate seal.

Important: In NTC control well, do NOT add cDNA template. Add 2x qPCR master mix and nuclease-free H2O only.

- 5. Briefly centrifuge the plates at 1,500x g for 1 minute at room temperature. For maximum reliability, replicates are strongly recommended (minimum of 3).
- 6. For PCR program setup, please refer to the instructions of the master mix of the user's choice. We recommend a typical 3-step qPCR protocol for a 200nt amplicon:

Step	Temperature	Time	Number of cycles					
Initial denaturation	95°C	10 min	1					
Denaturation	95°C	20 sec						
Annealing	65°C	20 sec	40					
Extension	72°C 20 sec		40					
Data acquisition	Plate read							
Recommended	Melting cu	1						
Hold	4°C Indefinite		1					

Three-step cycling protocol

7. (Optional) Load the PCR products on 1.5% agarose gel and perform electrophoresis to confirm the single band amplification in each well.

Figure 1. Layout of GeneQuery[™] qPCR array kit controls.

Table 2. Interpretation of control results:

Controls	Results	Interpretation	Suggestions
Housekeeping gene controls	Variability of a housekeeping gene's Cq value	The expression of the housekeeping gene is variable in samples; cycling program is incorrect	Choose a constantly expressed target, or analyze expression levels of multiple housekeeping genes; use correct cycling program and make sure that all cycle parameters have been correctly entered
gDNA Control (GDC)	$Cq \ge 35$	No gDNA detected	N/A
	Cq < 35	The sample is contaminated with gDNA	Perform DNase digestion during RNA purification step
Positive PCR Control (PPC)	Cq > 30; or The Cq variations > 2 between qPCR Arrays.	Poor PCR performance; possible PCR inhibitor in reactions; cycling program incorrect	Eliminate inhibitor by purifying samples; use correct cycling program and make sure that all cycle parameters have been correctly entered
No Template Control (NTC)	Positive	DNA contamination in workflow	Eliminate sources of DNA contamination (reagents, plastics, etc.)

Figure 3. A typical melting peak of a qPCR product.

GeneQuery™ Human Astrocyte Cell Biology qPCR Array Kit (GQH-AST) Catalog #GK009

GeneQueryTM Human Astrocyte Cell Biology qPCR Array Plate Layout* (8 controls in Bold and Italic)

	1	2	3	4	5	6	7	8	9	10	11	12
A	AFF2	CD44	CRYAB	EPM2A	HEY1	ITGA3	LMO2	NHLRC1	POMC	SCN1B	TGFB2	β-actin
B	ATRX	CDKL5	DLK1	FMR1	HOPX	JAG1	LPPR4	NOTCH1	PRDM16	SLC25A18	TGFB3	GAPDH
С	BEND6	CDKN2B	DNER	FOXG1	HTT	JAK1	MAPK10	NOTCH3	PRRX1	SMAD2	TGFBR3	LDHA
D	BHLHE40	CHRNA4	DPF3	FXR1	IGFBP7	KLF5	MAPK14	NR2E1	PTPRE	SMAD3	TH	NONO
E	BHLHE41	CLN8	DUSP1	FXR2	IL1RAPL1	LEP	MECP2	NUFIP1	RBPJ	STAT2	TM4SF1	PPIH
F	BMP7	CNTF	DUSP18	GABRG2	IL2RA	LGALS3	MVP	NUFIP2	RPS27A	STAT6	TSPAN7	GDC
G	CACNA1H	CNTFR	EFHC1	GFAP	IL6	LHX2	NFIC	OTX1	S100A6	SYNC	UBE3A	PPC
Η	CASP3	COBL	EMX2	GLIPR1	IRS2	LIF	NFIX	PHF11	SCN1A	TDRD7	ZFP3	NTC

* gene selection may be updated based on new research and development